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Abstract 

Collective mind is introduced as a set of simple intelligent units (say, neurons, or interacting 
agents), which can communicate by exchange of information without explicit global control. 
Incomplete information is compensated by a sequence of random guesses symmetrically 
distributed around expectations with prescribed variances. Both the expectations and variances 
are the invariants characterizing the whole class of agents. These invariants are stored as 
parameters of the collective mind, while they contribute into dynamical formalism of the agents’ 
evolution, and in particular, into the reflective chains of their nested abstract images of the selves 
and non-selves. The proposed model consists of the system of stochastic differential equations in 
the Langevin form representing the motor dynamics, and the corresponding Fokker-Planck 
equation representing the mental dynamics (Motor dynamics describes the motion in physical 
space, while mental dynamics simulates the evolution of initial errors in terms of the probability 
density). The main departure of this model from Newtonian and statistical physics is due to a 
feedback from the mental to the motor dynamics which makes the Fokker-Planck equation 
nonlinear. Interpretation of this model from mathematical and physical viewpoints, as well as 
possible interpretation from biological, psychological, and social viewpoints are discussed. The 
model is illustrated by the dynamics of a dialog. 

1. Introduction 
The concept of collective mind has appeared recently as a subject of intensive scientific 

discussions from economical, social, ecological, and computational viewpoints (Huberman, B., 
1988, Zak, M., 1993). It can be introduced as a set of simple units of intelligence (say, neurons, 
or interacting agents), which can communicate by exchange of information without an explicit 
global control. The objectives of the agents may be partly compatible and partly contradictory 
(i.e., they can cooperate or compete). The exchanging information may be at times inconsistent, 
often imperfect, non-deterministic and delayed. Nevertheless, observations of working insect 
colonies, social systems, and scientific communities suggest that such collectives of agents appear 
to be very successful in achieving global objectives, as well as in learning, memorizing, 
generalizing and predicting, due to their flexibility, adaptability to environmental changes, and 
creativity. 



The objective of this paper is to introduce a dynamical formalism describing the evolution 
of the behavior of communicating agents. All the previous attempts to develop models for so 
called active systems (Le., systems that possess certain degree of autonomy from the environment 
that allows them to perform motions that are not directly controlled from outside) have been 
based upon the principles of Newtonian and statistical mechanics (A. S. Mikhailov, 1990). These 
models appear to be so general that they predict not only physical, but also some biological and 
economical, as well as social patterns of behavior exploiting such fundamental properties of 
nonlinear dynamics as attractors. Not withstanding indisputable successes of that approach 
(neural networks, distributed active systems, etc.) there is still a fundamental limitation that 
characterizes these models on a dynamical level of description, they propose no difference 
between a solar system, a swarm of insects, and a stock market. Such a phenomenological 
reductionism is incompatible with the first principle of progressive biological evolution (I. 
Prigogine, 1980, H. Haken, 1988). According to this principle, the evolution of living systems is 
directed toward the highest levels of complexity if the complexity is measured by an irreducible 
number of different parts which interact in a well-regulated fashion (although in some particular 
cases deviations from this general tendency are possible). At the same time, the solutions to the 
models based upon dissipative Newtonian dynamics eventually approach attractors where the 
evolution stops (until a “master” reprograms the model). Therefore, such models fail to provide 
an autonomous progressive evolution of living systems (i.e. evolution leading to increase of 
complexity). 

Let us now turn to the stochastic extension of Newtonian models. Actually, it is a well- 
established fact that evolution of life has a diffusion-based stochastic nature as a result of the 
multi-choice character of behavior of living systems. That means that the simplest living species 
must obey the second law of thermodynamics as physical particles do. However, then the 
evolution of living systems (during periods of their isolation) will be regressive since their 
entropy will increase (I. Prigogine, 1955). As pointed out by R. Gordon (1999), a stochastic 
motion describing physical systems does not have a sense of direction, and therefore, it cannot 
describe a progressive evolution. As an escape from this paradox, Gordon proposed a concept of 
differentiating waves (represented by traveling waves of chemical concentration or mechanical 
deformation) which are asymmetric by their nature, and this asymmetry creates a sense of 
direction toward progressive evolution. Although the concept of differentiating waves itself 
seems convincing, it raises several questions to be answered: Who or what arranges the 
asymmetry of the differentiating waves in the “right” direction? How to incorporate their 
formalism into statistical mechanics providing progressive evolution without a violation of the 
second law of thermodynamics? Thus, although the stochastic extension of Newtonian models 
can be arranged in many different ways (for instance, via relaxation of the Lipcshitz conditions, 
(M. Zak, 1992), or by means of opening escape-routes from the attractors), the progressive 
evolution of living systems cannot be provided. 

The limitations discussed above have been addressed in several publications in which the 
authors were seeking a “border line” between living and non-living systems. It is worth noticing 
that one of the “most obvious” distinctive properties of the living systems, namely, their 
intentionality, can be formally disqualified by simple counter-examples; indeed, any mechanical 
(non-living) system has an “objective” to minimize action (the Hamilton principle) as well as any 
isolated diffusion-based stochastic (non-living) system has an “objective” to maximize the 
entropy production (“The Jaynes Principle,” H. Haken, 1988). The departure from Newtonian 
models via introduction of dynamics with expectations and feedback from future has been 
proposed by B. Huberman and his associates (B. Huberman, 1993). Further departure which 
includes learning nested models of multi-agent systems were introduced by J. Vidal (J. Vidal, 
1998). However, despite the fact that the non-Newtonian nature of living systems in these works 
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was captured correctly, there is no global analytical model which would unify the evolution of the 
agent’s state variables and their probabilistic characteristics such as expectations, self-images etc. 

The objective of this paper is to develop a new mathematical formalism within the 
framework of classical dynamics that would allow one to capture the specific properties of natural 
or artificial living systems such as formation of the collective mind based upon abstract images of 
the selves and non-selves, exploitation of this collective mind for communications and 
predictions of future expected characteristics of evolution, as well as for making decisions and 
implementing the corresponding corrections if the expected scenario is different from the 
originally planned one. The approach is based upon our previous publications (M. Zak, 1999, 
2000, and 2002) which postulate that even a primitive living species possesses additional non- 
Newtonian properties which are not included in the laws of Newtonian or statistical mechanics. 
These properties follow from a privileged ability of living systems to possess a self-image (a 
concept introduced in psychology) and to interact with it. The mathematical formalism is based 
upon coupling the classical dynamical system (with random components caused by uncertainties 
in initial conditions as well as by the Langevin forces) representing the motor dynamics with the 
corresponding Fokker-Planck equation describing the evolution of these uncertainties in terms of 
the probability density and representing the mental dynamics. The coupling is implemented by 
the information-based supervising forces that can be associated with the self-awareness. These 
forces fundamentally change the pattern of the probability evolution, and therefore, leading to a 
major departure of the behavior of living systems from the patterns of both Newtonian and 
statistical mechanics. Further extension, analysis, interpretation, and application of this approach 
to the collective-mind-based communicating agents will be addressed in this paper. It should be 
stressed that the proposed model is supposed to capture the signature of life on the 
phenomenological level, i.e., based only upon the observable behavior, and therefore, it will not 
include a bio-chemical machinery of metabolism. Such a limitation will not prevent one from 
using this model for developing artificial living systems as well as for studying some general 
properties of behavior of natural living systems. Although the proposed model is supposed to be 
applicable to both open and closed autonomous systems, the attention will be concentrated upon 
the latter since such properties of living systems as free will, prediction of future, decision 
making abilities, and especially, the phenomenology of mind, become more transparent there. 

2. Reflective chains: what do you think I think you think.. . 
We will start with the simplest model of two interacting agents assuming that each agent is 

represented by an inertionless classical point evolving in physical space. We will also assume that 
the next future position of each agent depends only upon its own present position and the present 
position of his opponent. Then their evolutionary model can be represented by the following 
system of differential equations: 

Here xland x2 are the state variables for the agent 1 and the agent 2, respectively. 



We will start with the assumption that these agents belong to the same class, and therefore, 
they know the structure of the whole system (l), (2). However, each of the agents may not know 
the initial condition of the other one, and therefore, he cannot calculate the current value of his 
opponent’s state variable. As a result of that, the agents try to reconstruct these values using the 
images of their opponents. This process can be associated with the concept of reflection; in 
psychology reflection is defined as the ability of a person to create a self-nonself images and 
interact with them. 

Let as turn first to the agent 1.  In this view the system (l), (2) looks as following 

where xll is the self-image of the agent 1, xzlis the agent’s 1 image of the agent 2, and x121 is 
the agent’s 1 image of the agent’s 2 image of the agent 1. 

This system is not closed since it includes an additional 3-index variable x121. In order to 
find the corresponding equation for this variable, one has to rewrite equations (3), (4) in the 3- 
index form. But it is easily verifiable that such form will include 4-index variables, etc., i.e., this 
chain of equations will never be closed. By interchanging the indices 1 and 2 in equations (3) and 
(4), one arrives at the system describing the view of the agent 2. The situation can be generalized 
from two- to n - dimensional systems. It is easy to calculate that the total number of equations for 
the m-th level of reflection, i.e., for the m-index variables, is 

N ,  = n m .  (5) 

Thus, the number of equations grows exponentially with the number of the levels of 
reflections, and it grows linearly with the dimensionality n of the original system. It should be 
noticed that for each m-th level of reflection, the corresponding system of equations always 
includes (m+l)-index variables, and therefore, it is always open. Hence, for any quantitative 
results, this system must be supplemented by a closure, i.e., by additional equations with respect 
to extra-variables. In order to illustrate how it can be done, let us first reduce equations (1) and (2) 
to the linear form 

Taking the position of the agent 1, we can rewrite equation (6) in the form: 

i 1  = a1 pi + a,,x,, 



In which the unknown agent’s 2 state variable x2 is replaced with its value to be 
predicted by the agent 1. Recalling that the agents 1 and 2 belong to the same class, it is 
reasonable to assume that the agent 1 knows the expected initial value x: as well as the initial 
variance 0: of the agent’s 2 state variable x2. Based upon that, the agent 1 can predict current 
values of the agent’ 2 state variable as: 

where L(t) is a Langevin force represented by a random function with zero mean and a F- 
correlation function, ie .  the random force has no bias, and its next values are totally independent 
upon all the previous values. According to this representation the variable x12 has the expected 
value xz and the variance 02. In other words, the prediction consists of random guesses dispersed 
symmetrically around the expected value while the expected value x2 as well as the variance 0 2  

characterizing this dispersion are to be found. Substituting Equation (9) into Equation (8), one 
arrives at the following Langevin-type stochastic differential equation, (H. Risken, 1989) 

of the agent 1. Similar equation can be written for the agent 2 

However, from the viewpoint of the agent 1, the last equation may have two different forms 

or 

Equation (1 la) expresses that the agent 1 assumes that the agent 2 knows the state variable 
of his opponent (or partner), i.e., xl. On the contrary, equation ( l lb)  expresses that the agent 1 
assumes that the agent 2 does not know the opponent’s (or partner) variable and predicts it in the 
same way in which the agent 1 does. From the viewpoint of the reflection levels, the system (lo), 
(11) is on the fust level since each agent uses only the image of his opponent while the systems 
(lo), (1 la) and (lo), (1 lb) are on the second level since each agent, in addition, uses the image of 
the image of the opponent (partner) of itself and his opponent (partner). In order to make our 
point in the simplest way, we will stay with the first level of reflection, Le., with the system (lo), 
(11). 
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Formally these equations are not coupled (unlike their original versions (6), (7)). However, 
as will be shown below, they are coupled indirectly, via the variables xl,~2,olro2. Indeed, since 
(6) and (7) can be considered as the Langevin-type stochastic differential equations, the evolution 
of these variables is governed by the corresponding Fokker-Planck equation (H. Risken, 1989) 

Here p(t,Xl,X2) is the joint probability density of distribution of the state variables x1 and 
x2 over the space coordinates XI and X2. Equation (12) describes the evolution of the initial 
probability density as a result of action of the random forces L(t). This equation must be 
complemented by the normalization condition 

-m --m 

as well as by the definitions of Xand o 

m m  

x i  = X i p ( t , X l , X 2 ) d X  , d X  2 ,  i = 1,2 
-ce - m  

The system (12)-(15) is closed, and it can be solved subject to the initial and boundary 
conditions 

m -  

Substituting (14) and (15) (as the known functions of time found from the solution of this 
system) into equations (10) and (1 l), one obtains the solutions for the state variables. 

f 

x i  = exp( a i i t ) [  J’ a i j  ( x  + c j ~ ) d t  + x:], i ,  j = 1,2; i f j .  (18 ) 
0 



Here xi0 is the initial value of the corresponding state variable. 

It should be noticed that the solutions (18) are random because of the randomness of the 
Langevin forces L. That is why for qualitative analysis it is more convenient to stay with the 
statistical invariants of these solutions i.e., with the means xi the variances oI expressed by 
Equations (14) and (15), respectively. 

It should be noticed that the same strategy of the solution can be applied to the models 
describing the second level of reflection, i.e., Equations (lo), (1 la) or (lo)( 1 lb) with the only 
difference that these equations express only the view of the agent 1. After interchanging the 
indexes 1 and 2 in these equations, one arrives at the similar system expressing the view of the 
agent 2. Then each agent is supposed to create the image of the model of his opponent (partner), 
etc. 

3. Dialog as evolutionary game with incomplete information. 

In this section we will apply the model of two interacting agents presented by equations 
(lo)-( 17) to the evolutionary games. The model is intentionally trivialized to make the interaction 
between the agents easily tractable; at the same time, this model still preserves the distinguished 
properties of the proposed approach. The general model with many other applications has been 
discussed in Zak, M, 2003. A game here is understood as a special type of an interaction between 
two agents, which follow certain rules and expecting a certain outcome. A game is evolutionary if 
the interacting agents change their internal states in order to be successful in the future. Turning 
to equations (10) and (1 l), one can see that this model of interacting agents satisfies both of these 
definitions. Indeed, the state variable xI can be associated with internal representations of the 
agents. The right-hand parts of equations (10) and (1 1) can be considered as the statements made 
by each of the agent, respectively. Each of those statements depends upon the both state variables 
as the reactions to the corresponding statements. The left-hand parts of equations (10) and (11) 
express the changes of the state variables. From these changes the agents calculate the next 
statements, and that changes the internal states of the agents. It should be noticed that the 
representations as well as the statements are arbitrary with respect to what one wants to present. 
In other words, the model captures the grammar without a semantic. It should be recalled that 
games could be adversary or cooperative. In this section we will deal only with the cooperative 
games; in particular, the outcome of the game will be to approach the common ground (or mutual 
belief, or sheared conception) regardless of the initial conditions. Obviously, if the system (lo), 
(1 1) is stable, i.e., if 

any initial conditions xp (i = 1, 2) will lead to the common ground i.e., to the zero solution, 
under the condition that each agent has a complete information not only about the values of his 
own state variable, but about the values of the state variable of another agent as well. However, in 
case of language communications, the information is never complete: it could always be 
interpreted in many different ways, unless the sender and the receiver have some “expected” 
mutual belief following from previous knowledge about each other backgrounds, or about the 
context of the forthcoming dialog. Hence, it would be reasonable to assume that although each 
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agent does not know the values of the state variable of his partner, he, nevertheless, can come up 
with some random guesses that are characterized by known statistical invariants such as the mean 
x and the variance 0. Turning to equation (9), one can recognize that this is exactly the same 
representation we just mentioned. As shown in the last section, actually it is sufficient for the 
agent to know only the initial values of these invariants since then their current values are 
uniquely determined by the corresponding Fokker-Planck equation (12). Thus, we have to return 
to equations (12)-(17) in order to find these invariants. We will demonstrate that for a simple 
system such as equations (lo), ( l l ) ,  one does not need to find the solution to equation (12) 
subject to the conditions (13)-( 17); instead, the direct equations with respect to the statistical 
invariants x and CT can be derived from Equation (12). Indeed, let us multiply equation (12) by Xi 
(i = 1, 2) and integrate over the whole space. Then, taking into account the conditions (13) and 
(17), one obtains the following system of ordinary differential equations with respect to the 
expected values of the state variables. 

Obviously the systems (20), (21) and (6), (7) are identical, Le., the evolution of the state 
variables (with complete information) and their expectations is described by the same model. 
(Such a coincidence results from the linearity of the original mode). But it should be noticed that 
the stability of expectations does not guarantee the stability of the system (lo), (11),  Le., the 
stability of the state variables with incomplete information. Indeed, let us turn to the solution (18) 
of equations (10) and (11). Obviously this solution is unstable if alpO or azz>O, regardless of the 
expectations and variances as functions of time, and even if the first inequality in (19) is satisfied. 
Therefore, in order to provide the stability of evolution of the state variables with incomplete 
information, the expectations must be “more stable,” Le., (as it follows from the standard 
theorems of linear stability theory) the inequalities are to be stronger than (19) 

In our further analysis we will assume that the conditions (22) hold. However, one should 
notice that these conditions are only necessary, but not yet sufficient for the stability of equations 
(10) and (1  1). In order to derive the sufficient conditions, one has to analyze the evolution of the 
variances. For that purpose, let us multiply equation (12) by Xi2 (i =1,2), and integrate it over the 
whole space. After transformations similar to those performed above for expectations, one arrives 
at a system of ODE that is nonlinear with respect to variances and is coupled with equations (20), 
(21). For better observability, we will simplify this system by assuming that 

X10 = 0, X*O = 0 

Then the governing equations for the variances can be written in the following form 

2 2 2 2  b,2 = 2a, ,a l  + 2a12 a1 a2 , 

& 2 2  = 2a22m2 2 + 2 a , , 2 a 2 2 5 , 2 .  



Although this system is still nonlinear, its stability analysis is simple. Indeed, since it has 
one attractor 

and one repeller 

the stability will be provided if the initial variances are inside the basin of attraction, i.e., if 

a1 1 a22 

a21 a12 
(a20)2 < -- (a*o)2 < -2, 2 

Thus, the inequalities (22) and (28) are necessary and sufficient for the stability of the 
system (lo), (1  1) in the simplified case (23). As follows from (28), the incompleteness of the 
information measured by the initial variances 01' and 02 is directly responsible for the 
divergence of the dialog. At the same time, the stability of the original model (6),  (7) represented 
by the conditions (22), increases the allowed degree of the incompleteness that would still 
preserve the convergence of the dialog. 

In conclusion of this section, we will make several remarks. First we will analyze the 
effect of noise upon the stability of the dialog. For that purpose, we will add additional Langevin 
forces to equations (6) and (7): 

(30) 
2 X = aZ1x1 + a22x2 + b, r,(t) 

Here rl(t) and Tz(t) are random functions with zero means and with correlation functions 
equal to a &function, and the constants bI2, b; represent the strengths of the noise interference 
for the agent 1 and 2 respectively. After the transformations similar to those performed above, 
one arrives at the following stability conditions: 

al l  b2' 
2 

( O I 0 ) 2  < -++ U 2 bl , ( o , o ) 2  < -2+ - 
2 '  

a 21 a 21 a 12 a 12 



These conditions demonstrate that the noise interference decreases stability of the dialog by 
decreasing the upper bound of the initial variances (which are proportional to the degree of 
incompleteness of information) that are sufficient for the convergence of the dialog to the 
common ground. 

Second, we will assume that each agent is able to stabilize the dialog by applying control 
(or self-supervising) forces composed of the probability density and its space-derivatives. In order 
to suppress noise we will choose the following control forces 

Fl = - C l 2  L l n  p ,  
3x1 

2 a  

3 x 2  
F ,  = -cl -In p 

to be added to the right-hand sides of equations (6) and (7) respectively 

Here the constants c12 and c represent the strengths of the control forces. Their contribution 
into the stability conditions is 

2 

2 '  (35 ) c2 

Q 21 Q 21 Q 21 Q 12 Q 12 Q 12 

a 1 1  b 
2 

Q 2 2  b 1 2  C1 (a, 0 ) <  --+2-- 
2 2 < -2+ 2- - 2 '  

As follows from (33, the control forces can completely suppress the effect of noise if 



Thus, the proposed model consists of three basic components. The first component is the 
dynamical model of the agents interaction (in the form of a dialog) represented by ODE (see 
equations (6) and (7)). This model can be associated with the motor dynamics. Since language 
communications are always incomplete, the motor dynamics has to be complemented by 
additional information. This information is coming from the collective mind that represents a 
special knowledge-base (or a context) composed of the abstract images of the agents in terms of 
their joint probability density; these images capture general characteristics of the agents, their 
“habits,” expected routes of their evolution, possible deviations of the state variables from their 
expected values, etc., (see equation (12)). From the collective mind (12), each agent can extract 
the evolution of his own (marginal) probability density pi.that represents his mental dynamics. In 
our model, the marginal densities are approximated by the expectations x and the variances oL, 
and therefore, the mental dynamics of the agents is expressed by equations (20), (24), and (21), 
(25), respectively. The last component of the model is the feedback from the collective mind (12) 
to the motor dynamics (6), (7) implemented by the control forces (32) (see equations (33) and 
(34)). These self-supervising forces can be associated with the agent’s self-awareness since they 
are composed only of the internal parameters characterizing the state of the collective mind, while 
their goal is to effect the motor dynamics in order to achieve a desired out- come of the “game.” 

The model introduced in this section is, probably, the simplest one that still allows us 
to present the proof-of-concept using well-observable closed-form analytical solutions. In the 
next section we will sketch an extension of this model to the general case when only a numerical 
approach can be applied. 

4. General Model 
In this section we will generalize the two-dimensional model described by equations (1) and 

(2) to n-dimension and add the control forces generalizing the forces (32) 

n - 

Here Xkbii is the state variable of the image of the k-th agent in view of the j-th agent in view 
of the i-th agent. This two-reflection-system of n2 equations is still open since additional 
equations for the three-index-variables are needed. Such equations can be written in the same 
form as equations (38), however, they will include the four-index-variables, and the total three- 
reflection-system will still be open. After m reflections one will arrive into nml equations with 
respect to nm variables. In order to close the system, one has to introduce a mechanism to create 
the chain of images. For that purpose, let us turn to the Liouville equation (25) that describes the 
evolution of the joint probability density p(X1,. . .X,). In the same way in which the density p(X) 
in equation (7) describes the self-image of a single agent, equation (25) can be exploited for 
description of the chain of images in the form of linear regressions 

(39 



Here M(xj) is expected value of x,, and the regression coefficients pji, pkt etc are uniquely 
defined by the components of the dispersion matrix [c,] (for instance, pi,= rij /ci). Thus, all the 
regressions (39) are determined by the distribution p governed by equation (25). After 
substitution the regressions (39) into equations (37) and (38), one arrives at a closed system of 
ODE’S and PDE that couples the motor and mental dynamics in view of the i-th agent. 

a 
ax 

n 

xik = Fi (xi, Mx, ,... M x , ,  r,, ) + -In pi(xi,Mxl,..Mx,, r, )E aU [ 1 +  Po (rks)Ir i = 1 ,... n .  (40a) 
j=1 

a n 

X j l i  = F j  ( x i ,  M x ,  ,... Mx ,, r j  ) + -In pi ( x i  , M x  ,... Mx , rh , t)c aii [1+ pkji (rss >I, i = 1 ,... n. (40b)  
ax i  j = 1  

Here pi is the joint probability density in view of the i-th agent. 

It should be emphasized that equation (41) is characterized not only by nonlinear diffusion, 
but by a nonlinear drift as well since both of these coefficients depend upon the density moments. 
Obviously, different agents have different views of the system, and these differences start with 
different initial conditions and initial densities for different i-ths. Hence, all the systems (40)-(41) 
evolve independently for different i-ths until an external event couples them. 

The structure of the complexity chains, in general, can be different from those described 
above. Indeed, suppose that all the agents, except the i-th one, shear information about the values 
of their state variables; therefore, they have to predict only the position of the i-th agent. That can 
be done via linear regression of xi onto the rest of the variables 

This structure can be generalized to the case when all the agents are divided into several 
groups such that the agents in the same group shear all the information about their state variables, 
while the agents from different groups do not. Thus, the proposed model is capable to capture 
complexity that matches the complexity of life, and that includes behavior of ecological, social as 
well as economics systems. 

Let us discussed in more details the control (or self-supervised) forces Fi. In our previous 
model, (see Equations (32)), their role was to stabilize the dialog by suppressing noise. In 
general, their choice depends upon the objective of the cooperating agents. If this objective is 
formulated in terms of minimization of a functional 

J = @ ( p . V p ,  ...) dV + min, I 
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then, applying the formalism of the control theory, one can find the corresponding control 
forces. However, one should notice that in the classical control theory, the control forces depend 
upon the state variables (S. Banks, 1986), while here they are composed of the parameters of the 
collective mind such as expected values and variances of the state variables, and that is why it is 
better to call them self-supervised forces. 

When communicating agents simulate the human society, some emerging objectives can 
take over and govern the agent’s behavior. As an example, consider the principle of reflectivity 
introduced by V. Lefebvre (2003): the subject tends to generate a pattern of behavior such that 
similarity is established and preserved between the subject and his model of the self “while this 
principle, is a manifestation of a special cognitive mechanism of self-representation rather than a 
result of the intellectual efforts of the subject consciously thinking about the self.” In terms of our 
formalism, the following self-supervised forces can implement this principle (see M. Zak, 2003) 

On a large time-scale, one can introduce the principle of maximum complexity stating that 
a human-like community of agents evolves toward the maximum increase of the complexity of its 
social structure. In terms of our formalism, such an evolution is achieved by the increase of the 
number of the levels of reflections, (see Equation (5)) .  However, a natural constraint for such an 
increase is the exponential growth of the capacity and resources required. 

More practical approach to selection of the self-supervised forces can be adopted from the 
concept of learning in neural nets. Suppose that these forces are sought in the following 
parametrised form 

F~ = t anhzwi , ,p j ,  i. j = 1,2 ,... k ,  
i , j  

in which wi, are constant weights, and pj is the value of the probability density at a fixed 
point j of the n-dimensional space X1...X,,while k is the number of the points at which the 
probability density is discretised. Let us assume that our objective is to teach the artificial 
communicating agents to make correct decisions in response to unexpected changes in external 
forces or in the objectives. For that purpose, first we have to find an expert whose responses 
(either rational or intuitive) will be optimal. Then, comparing these responses with the 
corresponding responses of the model and applying the back-propagation technique, one can find 
the optimal weights in the self-supervising forces. 

5. Interpretation of the model. 
In this section we will present and discuss the interpretation of the proposed collective- 

mind-based model of communicating agents from the viewpoints of mathematics, and physics. 
We will also propose possible interpretations from viewpoint of biology, psychology, neuro- 
science, social dynamics and economy, as well as language communications, control theory, and 
hardware implementation 
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A. Mathematical Viewpoint 

From the mathematical viewpoint the model is represented by the system of the 
Langevin-type stochastic differential equations (see Equations (lo), (1 1) or Equation (39)) 
and the corresponding Fokker-Planck equation (see Equation (12) or Equation (40). The 
connection between these equations is the following: Equation (39) simulates randomness 
while Equation (40) manipulates by the values of its probability; therefore, if Equation (39) 
are run independently many times, and statistical analysis of the corresponding solutions is 
performed, then the calculated probability density will evolve according to Equation (40). 
However, the major departure from the classical case here is in the coupling between the 
Langevin and the Fokker-Planks equations. This coupling is implemented by the self- 
supervising forces Fi as well as by the expectations xi and the variances cq of the state 
variables (see Equation (39)). As a result of this coupling, the Fokker-Planck equation 
becomes nonlinear with respect to the probability density, and that, in turn, leads to new 
fundamental phenomena in the probability space (M. Zak, 2003). These phenomena include 
formation of multi-attractor limit sets as well as formation of shock waves, and solitons. 

Both phenomena demonstrate a major departure from linear evolution of probability 
density. The multi-attractor limit sets allow one to introduce an extension of neural nets that 
can converge to a prescribed type of a stochastic process in the same way in which a regular 
neural net converges to a prescribed deterministic attractor. An information-based neural 
net of that type was introduced and analyzed in Zak, M., 2003. The shock waves and 
solitons decrees the rate of disorder by slowing down or even reverse the diffusion. 
Therefore, these phenomena can play an impotent role in self-organization of active 
systems. Another new phenomenon representing a special form of entanglement of 
stochastic processes is illustrated by Equations (10) and (11). Indeed, formally the 
stochastic processes described by these equations are independent since Equation (10) does 
not depend upon x2 and Equation (1 1) does not depend upon xl. However, these processes 
are coupled via their nvariantsi (see Equations (20) and (21), and that entangles them in a 
special nonlinear way. It should be noticed that this entanglement implements connection 
between the agents by mean of the collective mind. 

B. Physical Viewpoint. 

From the physical viewpoint, the model represents a fundamental departure from 
both Newtonian and statistical mechanics. Indeed, firstly, in Newtonian mechanics the 
evolution of the probability density (described by the Fokker-Planck equation) is always 
linear, and it never affects the underlying motion of the corresponding physical system. 
Secondly, in Newtonian mechanics the Fokker-Planck equation only registers the evolution 
of the probability density without affecting the corresponding equations of motion, and 
there are no principles that would determine additional feedback forces. Both of these 
conditions are violated in the proposed model: due to the self-supervising forces Fi, 
Equations (39) and (40) are coupled, and that, in turn, makes Equation (40) nonlinear. The 
same coupling between the evolution of the probability density and the corresponding 
motion in physical space may cause a decrease of the entropy i.e. a progressive evolution 
that is strictly forbidden by the statistical mechanics of isolated systems. Thus, the proposed 
model is non-compatible with both Newtonian and statistical mechanics. At the same time, 
it is fully consistent with the theory of differential equations and stochastic processes. The 
only conclusion following from that is that this model can display some “non-Newtonian” 
features. Formal similarity of the proposed model and quantum mechanics is discussed in 
Zak, M. 2002, and 2003. 
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C. Biological Viewpoint 

From the viewpoint of evolutionary biology, the proposed model illuminates the 
“border line” between living and non-living systems. The starting point of our biologically 
inspired interpretation is the second law of thermodynamics that states that the entropy of 
an isolated system can only increase. This law has a clear probabilistic interpretation: 
increase of entropy corresponds to the passage of the system from less probable to more 
probable states, while the highest probability of the most disordered state (which is the state 
with the highest entropy) follows from a simple combinatorial analysis, (I. Prigogine, 
1980). However, this statement is correct only if there is no Maxwell’ sorting demon, Le., 
nobody inside the system is rearranging the probability distributions. But this is precisely 
what the self-supervising feedback is doing: it takes the probability density p from Equation 
(40), creates functionals or functions of this density, converts them into a force and applies 
this force to the equation of motion, (see the last three terms in Equations (39)). As already 
mentioned above, because of that property of the model, the evolution of the probability 
density becomes nonlinear, and the entropy may decrease “against the second law of 
thermodynamics.” Obviously the last statement should not be taken literary; indeed, the 
proposed model captures only those aspects of the living systems that are associated with 
their behavior, and in particular, with their motor-mental dynamics since they are beyond of 
the dynamical formalism. Therefore, such physiological processes that are needed for the 
metabolism are not included into the model. That is why this model is in a formal 
disagreement with the second law of thermodynamics while the living systems are not. In 
order to further illustrate the connection between the life-nonlife discrimination and the 
second law of thermodynamics, consider a small physical particle in a state of random 
migration due to thermal energy, and compare its diffusion i.e. physical random walk, with 
a biological random walk performed by a bacterium. The fundamental difference between 
these two types of motions (that may be indistinguishable in physical space) can be detected 
in probability space: the probability density evolution of the physical particle is always 
linear and it has only one attractor: a stationary stochastic process where the motion is 
trapped. On the contrary, a typical probability density evolution of a biological particle is 
nonlinear: it can have many different attractors, but eventually each attractor can be 
departed from without any “help” from outside. 

That is how H. Berg, 1983, describes the random walk of an E. coli bacterium: “If a 
cell can diffuse this well by working at the limit imposed by rotational Brownian 
movement, why does it bother to tumble? The answer is that the tumble provides the cell 
with a mechanism for biasing its random walk. When it swims in a spatial gradient of a 
chemical attractant or repellent and it happens to run in a favorable direction, the probability 
of tumbling is reduced. As a result, favorable runs are extended, and the cell diffuses with 
drift”. Berg argues that the cell analyzes its sensory cue and generates the bias intemally, by 
changing the way in which it rotates its flagella. This description demonstrates that actually 
a bacterium interacts with the medium, i.e., it is not isolated, and that reconciles its behavior 
with the second law of thermodynamics. However, since these interactions are beyond the 
dynamical world, they are incorporated into the proposed model via the self-supervised 
forces that result from the interactions of a biological particle with “itself,” and that 
formally “violates” the second law of thermodynamics. Thus, the proposed model offers a 
unified description of the progressive evolution of living systems. Based upon this model, 
one can formulate and implement (via the reflective chains) the principle of maximum 
increase of complexity that governs the large-time-scale evolution of living systems. It 
should be noticed that at this stage, our interpretation is based upon logical extension of the 
proposed mathematical formalism, and is not yet corroborated by experiments. 
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D. Psychological viewpoint. 

From the viewpoint of psychology-the proposed model can be interpreted as 
representing interactions of the agent with the self-image and the images of other agents via 
the mechanisms of self-awareness. In order to associate these basic concepts of psychology 
with our mathematical formalism, we have to recall that living systems can be studied in 
many different spaces such as physical (or geographical) space as well as abstract (or 
conceptual) spaces. The latter category includes, for instance, social class space, 
sociometric space, social distance space, semantic space e.t.c.Tuming to our model, one can 
identify two spaces: the physical space x,t in which the agent state variables xi(t) 
evolve,(see Equation (39)), and an abstract space p(Xl..X,, t) in which the probability 
density of the agent’ state variables evolve (see Equation (40)).The connection with these 
spaces have been already described earlier: if Equation (39) are run many times starting 
with randomly chosen initial conditions, as well as with random values of the Langevin 
forces Li(t), one will arrive at an ensemble of different random solutions, while Equation 
(40) will show what is the probability for each of these solutions to appear. Thus, Equation 
(40) describes the general picture of evolution of the communicating agents that does not 
depend upon particular initial conditions. Therefore, the solution to this equation can be 
interpreted as the evolution of the self- and non-self images of the agents that jointly 
constitutes the collective mind in the probability space. Based upon that, one can propose 
the following interpretation of the model of communicating agents: considering the agents 
as intelligent subjects, one can identify Equation (39) as a model simulating their motor 
dynamics, i.e. actual motions in physical space, while Equation (40) as the collective mind 
composed of mental dynamics of the agents. Such an interpretation is evoked by the 
concept of reflection in psychology, (V. Lefebvre, 1997). Reflection is traditionally 
understood as the human ability to take the position of an observer in relation to one’s own 
thoughts. In other words, the reflection is the self-awareness via the interaction with the 
image of the self. Hence, in terms of the phenomenological formalism proposed above, a 
non-living system may possess the self-image, but it is not equipped with the self- 
awareness, and therefore, this self-image is not in use. On the contrary, in living systems the 
self-awareness is represented by the self-supervising forces which send information from 
the self-image to the motor dynamics. Due to this property that is well-pronounced in the 
proposed model, an intelligent agent can run its mental dynamics ahead of real time, (since 
the mental dynamics is fully deterministic, and it does not depend explicitly upon the motor 
dynamics) and thereby, it can predict future expected values of its state variables; then, by 
interacting with the self-image via the supervising forces, it can change the expectations if 
they are not consistent with the objective. Such a self-supervised dynamics provides a major 
advantage for the corresponding intelligent agents, and especially, for biological species: 
due to the ability to predict future, they are better equipped for dealing with uncertainties, 
and that improves their survivability. It should be emphasized that the proposed model, 
strictly speaking, does not discriminate living systems of different kind in a sense that all of 
them are characterized by a self-awareness-based feedback from mental to motor dynamics. 
However, in primitive living systems (such as bacteria or viruses) the self-awareness is 
reduced to the simplest form that is the self-nonself discrimination; in other words, the 
difference between the living systems is represented by the level of complexity of that 
feedback. 
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E. Neuro-Science Viewpoint 

From the viewpoint of neuro-science the proposed model represents a special type 
of neural net. Indeed, reinterpreting an agent’s state variable xi as a neuron’s mean soma 
potential, and assuming that each neuron receives full information from the rest of neurons, 
one arrives at a conventional neural net (37). It should be recalled that in this case the self- 
supervising forces are not needed, and they can be ignored. The departure from the 
conventional case starts with the incompleteness of information, i.e., when a neuron does 
not receive the values of the mean soma potentials from the rest of the neurons. This 
incompleteness is compensated by a “general knowledge” stored in the collective mind (40) 
and delivered to the neural net via the self-supervising forces Fi. As a result of that, the 
neural net (39) becomes random, while the evolution of its statistical invariants is described 
by the collective mind (49). In order to illuminate the difference between these two cases 
we will start with a single continuously updated linear neuron with a dissipation feedback 

x = -X, (44) 

The state variable x eventually approach an attractor x=O regardless of initial 
conditions. 

(45) x = xo exp(-t), 

In general case, a multi-dimensional nonlinear neural net may converge to one of the 
several attractors that can be static, periodic, or chaotic as well. However, one fundamental 
property remains the same: as soon as these attractors are approached, the evolution stops. 

Let us turn now to a stochastic extension of a neuron (44). This can be done in several 
ways. One way is to relax the Lipschitz conditions, (M. Zak, 1992). Another way is to 
introduce a special types of the equilibrium points which are attractors in one direction and 
repellers in the others. In the both cases the neuron state variable will perform a Brownian 
motion that can be included in Equation (44) via the Langevin force L(t): 

X=-x+L(t) .  (49 

Equation (46) has the solution: 

x = x o  exp( - t >  + j exp[ - ( t  - t ’ ) ]L( t ’ )d t ’ .  (47 > 
0 

Equation (47) describes a stochastic process that characterizes the evolution of the 
neuron state variable. The evolution of the probability density is described by the 
corresponding Fokker-Planck equation 
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a 2  - = a ( X p ) +  D- 
a t  ax ax2 p .  

Its solution for the sharp initial value p(x,O)=6(x-+O) is represented by a normal 
distribution 

1 X 2  
P = J-exp[ - 7 1 ,  D ‘ =  D [ l  - exp( - 2 t ) l .  

2 x 0  2 0  
(49 1 

As t+=, the distribution tends to the thermodynamical limit with D’+D. Obviously, 
D>D’, and therefore, the entropy E=LnDd2x approaches its maximum value at t - w .  This 
result can be extended to the general case of multi-dimentional diffusion-based neural nets. 
That means that the evolution of such neural nets is always regressive, i.e. their entropy can 
only increase. 

Let us introduce a control force to reverse the increase of the entropy. Within the 
framework of the Newtonian formalism, the most general control force must depend upon 
the state variables and time, Le., F = F(x,t). Substituting this force into Equation (46), and 
introducing the corresponding changes into Equation (48), in which the drift and the 
diffusion coefficients are functions of X and t. Then, according to the Boltzman H-theorem, 
(H. Risken, 1989), the entropy of the system will still monotonously increase regardless of 
the a particular form of the control force. However, the situation is changed if the control is 
represented by a self-supervised force composed of the probability density and its 
derivatives. For the proof of concept, let us choose this force as following 

a 
ax F = D - h p  

which is applied after t>T. Then Equations (46) and (48) are to be rewritten as 

a 
ax I;- = - x + L(t )  + D -In p 

and 

a a a 2  - = -[( X - D -In p ) p l +  D T p ,  
a t  ax ax ax 

respectively. After trivial transformations, Equation (52) is reduced to the form in 
which the diffusion term is suppressed 



- _  ap - " ( X p , .  
at ax 

The solution to this equation that starts from t>T is 

As follows from this solution, the self-supervised force reverses the evolution of the 
probability density towards the decrease of the entropy, and that makes a self-supervised 
neuron a "messenger of life." 

Thus, the fundamental property of the self-supervised neuron is its ability to create the 
self- image (Equation (52)) and interact with this image (Equations (53) and (54)). It would 
be a challenge for a future research to associate the self-supervised neuron with the mirror 
neuron 9 recently discovered in the monkey) that fires both when performing an action and 
when the monkey is observing the same action performed by another subject. Indeed, the 
way in which the self-supervised neuron works is the following. It is assumed that all the 
communicating agents belong to the same class in a sense that they share the same general 
properties and habits. It means that although each agent may not know the exact positions 
of the rest of the agents, he, nevertheless, knows at least such characteristics as their initial 
positions (to accuracy of initial joint probability density, or, at least, initial expected 
positions and initial variances). This preliminary experience allows him to reconstruct the 
evolution of expected positions of the rest of the agents using the collective mind as a 
knowledge base. Hence, a self-supervised neuron representing an agent A can be activated 
by an expected action of an agent B which may not be in a direct contact with the agent A at 
all, and that can be associated with the mirror properties of the self-supervised neuron. 

The collective properties of self-supervised neurons, Le., the self-supervised neural nets 
have a significant advantage over the regular neural nets: they possess a fundamentally new 
type of attractor -the stochastic attractor that is a very powerful generalization tool. Indeed, 
it includes a much broader class of motions than static or periodic attractors. In other words, 
it provides the highest level of abstraction. In addition to that, a stochastic attractor 
represents the most complex patterns of behavior if the self-supervised net describes a set of 
interacting agents. Indeed, consider a swarm of insects approaching some attracting pattern. 
If this pattern is represented by a static or periodic attractor, the motion of the swarm is 
locked up in a rigid pattern of behavior that may decrease its survivability. On the contrary, 
if that pattern is represented by a stochastic attractor, the swarm still has a lot of freedom, 
and only the statistic of the swarm motion is locked up in a certain pattern of behavior. For 
example, an information-based neural net (M. Zak, 2003) can approach a stochastic 
attractor that preserves a prescribed amount of information express via the entropy E. 

It should be emphasized that, due to the multi-attractor structure, the proposed model 
provides the following property: if the system starts from different initial conditions, it may 
be trapped in a different stochastic pattern. Such a property, in principle, cannot be provided 
by regular neural nets or cellular automata since they can have only one stochastic attractor. 
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F. Social and Economic Viewpoint 

One of the basic problem of social theory is to understand “how, with the richness 
of language and the diversity of artifacts, people can create a dazzlingly rich variety of new 
yet relatively stable social structures,” (M. Arbib, 1986). Within the framework of the 
dynamical formalism, the proposed model provides some explanations to this puzzle. 
Indeed, social events are driven by two factors: the individual objectives and social 
constraints. The first factor is captured by the motor dynamics (39), while the social 
constraint is created by the collective mind (40). A balance between these factors 
(expressed by stochastic attractors) leads to stable social structures, while a misbalance 
(expressed by stochastic repellers) causes sharp transitions from one social structure to 
another (revolutions) or to wandering between different repellers (chaos, anarchy). For an 
artificial “society” of communicating agents, one can assign individual objectives for each 
agent as well as the collective constrains imposed upon them and study the corresponding 
social events by analyzing’the governing equations (39) and (40). However, the same 
strategy is too nalve to be applied to a human society. Indeed, most human as members of a 
society, do not have rational objectives: they are driven by emotions, inflated ambitions, 
envy, distorted self- and nonself images, etc. At least some of these concepts can be 
formalized and incorporated into the model. For instance, one can consider emotions to be 
proportional to the differences between the state variables and their expectations 

E ,  = c ( x - x ) .  (55 )  

Equation ( 5 5 )  easily discriminates positive and negative emotions. Many associated 
concepts (anger, depression, happiness, indifference, aggressiveness. and ambitions) can be 
derived from this definition (possibly, in combination with distorted self and non-self 
images). But the most accurate characteristic of the human nature was captured by cellular 
automata where each agent copies the behaviors of his closest neighbors (which in turn, 
copy their neighbors, etc.). As a result, the whole “society” spontaneously moves toward an 
unknown emerging “objective.” Although this global objective is uniquely defined by a 
local operator that determines how an agent processes the data coming from his neighbors, 
there is not known any explicit connection between this local operator and the 
corresponding global objective: only actual numerical runs can detect such a connection. 
Notwithstanding the ingenuity of his model, one can see its major limitation: the model is 
not equipped with a collective mind (or by any other type of a knowledge base), and 
therefore, its usefulness is significantly diminished in case of incompleteness of 
information. At the same time, our model can be easily transformed into a cellular automata 
with the collective mind. In order to do that one has to turn to Equation (37), replace the 
sigmoid function by a local operator, and the time derivative-by the time difference. Then 
the corresponding Fokker-Planck equation (40) reduces to its discrete version that is 
Markov chains, (M. Zak, 2000). On the conceptual level, the model remains the same as 
discussed in the previous sections. This illustrates a possible approach to the social 
dynamics based upon the proposed model. 



From the viewpoint of economics, the proposed model can represent games with 
incomplete information. Probably, the best illustration of that is the so called minority game 
which is a simplified model of conflicting situations observed in financial markets, (D. 
Challet, 1997). It describes a system in which an odd number N of agents is allowed to 
make two possible choices: 1 or 0, and that divides the agents in two groups while the group 
with less number of agents wins. Clearly when agents know nothing about the possible 
strategies of their adversaries, the outcome is totally random. However, if the agents shear 
some global information about each other (such as the history of the game in the form of the 
sequence of the last winning choices), the dynamics of the game becomes extremely 
complex (for instance, it includes such phenomena as the phase transitions). Within the 
framework of our model, the sheared information can be stored in the collective mind, and 
this will provide the agents with the dynamics of interaction between the sheared 
knowledge and the individual strategies. An exciting challenge for future work is to test the 
utility of this approach in formalizing shared information as used in section 3. 

G. Language communications viewpoint. 

Language represents the best example of a communication tool with incomplete 
information since any message, in general, can be interpreted in many different ways 
depending upon the context i.e. upon the global information sheared by the sender and the 
receiver. Therefore, the proposed model is supposed to be relevant for some language- 
oriented interpretations. Indeed, turning to Equation (39), one can associate the weighted 
sum of the state variables with the individual interpretations of the collective message made 
by the agents. The sigmoid functions of these sums form the individual responses of the 
agents to this message. These responses are completed by the self-supervising forces that 
compensate the lack of information in the message by exploiting the global sheared 
information stored in the collective mind, (see Equation (40)). The agent’s responses 
converted into the new values of their state variables are transformed into the next message 
using the same rules, etc. These rules determined by the structure of Equations (39) and 
(40) can be associated with the grammar of the underlying language. In particular, they are 
responsible for the convergence to- or the divergence from the expected objective. It should 
be noticed that the language structure of the proposed model is invariant with respect to 
semantics. Hence, in terms of the linguistics terminology that considers three universal 
structural levels: sound, meaning and grammatical arrangement, (M. Yaguello, 1998), we 
are dealing here with the last one. To our opinion, the independence of the proposed model 
upon the semantics is an advantage rather than a limitation: it allows one to study invariant 
properties of the language evolution in the same way in which the Shannon information 
(that represents rather an information capacity) allows one to study the evolution of 
information regardless of a particular meaning of the transmitted messages. 

Let us now try to predict the evolution of language communications based upon the 
proposed model. As mentioned earlier, the evolution of the living systems is always 
directed toward the increase of their complexity. In a human society, such a progressive 
evolution is effectively implemented by increase or the number of reflections in a chain 
”What do you think I think you think, etc.” The society may be stratified into several levels 
or “clubs” so that inside each club the people will shear more and more global information. 
This means that the language communications between the members of the same club will 
be characterized by the increased capacity of the collective mind (see Equation (40)), and 
decreased information transmitted by the messages (see Equation (39)). In the theoretical 
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limit, these messages will degenerate into a string of symbols, which can be easily decoded 
by the enormously large collective mind The language communications across the stratified 
levels will evolve in a different way: as long as the different clubs are drifting apart, the 
collective mind capacity will be decreasing while the messages will become longer and 
longer. However, the process of diffusion between these two streams (not included in our 
model) is very likely. 

H. Control theory viewpoint. 

The proposed model can be considered as a closed-loop controlled dynamical system 
known in the engineering control, with the only difference that, unlike the engineering 
control where the control forces are triggered by the values of the state variables and their 
time-derivatives, here the control forces are determined by the parameters of the collective 
mind that implicitly represent the state variables of the underlying system. This type of 
control can be linked to a so-called reflective control introduced in mathematical 
psychology by V. Lefebvre, 2001, since the system is governed by the reflections, i.e., by 
the parameters characterizing the images rather than real objects. The mathematical 
consequences of this property have been discussed in the sub-section A of this section. 

I. Applications and implementations. 

The proposed model has two types of applications that can be associated with science 
and technology, respectively. The first type includes theoretical studies of behavior of living 
systems, and can be performed by direct computer simulations of the system (39), (40). The 
second type includes the development of artificial living systems that are supposed to 
simulate and replace some functions of a human (robots, unmanned spacecrafts, etc.). The 
most effective way of implementation of these systems is by means of analog devices such 
as VLSI chips used for neural net’s analog simulations (C. Mead, 1989). As discussed in 
the sub-section E of this section, Equation (39) can be treated as regular continuously 
updated neural nets with additional random forces. Implementation of these forces has been 
proposed by M. Zak, 2003, based upon non-Lipschitz dynamics. Equation (40), after 
approximation of space-derivatives be finite differences, can be easily transformed to a 
neural-net-like dynamical system that can be implemented by VLSI chips. 

6. Conclusion. 
In summary, we have introduced a new mathematical formalism that offers a rich 

framework for developing models capturing non-Newtonian properties of living systems. The 
proposed general approach has been focused on the behavior of communicating agents who 
compensate an incompleteness of exchanged information by means of the collective mind as a 
context-type of the global sheared knowledge base. Detailed analyses of an example illustrating 
the proposed formalism as well as discussion of speculations about its scientific and technological 
applications have been performed. 
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